Nicklas Hansen

PhD student, UC San Diego

I am a PhD student at UC San Diego, advised by Prof. Xiaolong Wang and Prof. Hao Su. My research is supported by the NVIDIA Graduate Research Fellowship. I am currently a research intern at NVIDIA Research, and I previously interned at Meta AI (FAIR). Before starting my PhD, I was a visiting student at UC Berkeley and a research intern at Berkeley AI Research. I received my BS and MS degrees from the Technical University of Denmark (DTU).

My research lies at the intersection of reinforcement learning, robotics, and computer vision. I am interested in building robust, scalable, and open-source algorithms for decision-making.

Publications and preprints

Papers sorted by recency. Representative papers are highlighted.

A Simulation Benchmark for Autonomous Racing with Large-Scale Human Data
Adrian Remonda, Nicklas Hansen, Ayoub Raji, Nicola Musiu, Marko Bertogna, Eduardo E. Veas, Xiaolong Wang
arXiv preprint, 2024
project page / arXiv / code / dataset / bibtex
Policy Learning with Large World Models
Ignat Georgiev, Varun Giridhar, Nicklas Hansen, Animesh Garg
arXiv preprint, 2024
project page / arXiv / code / models / bibtex
Hierarchical World Models as Visual Whole-Body Humanoid Controllers
Nicklas Hansen, Jyothir S V, Vlad Sobal, Yann LeCun, Xiaolong Wang*, Hao Su*
arXiv preprint, 2024
project page / arXiv / code / models / bibtex
A Recipe for Unbounded Data Augmentation in Visual Reinforcement Learning
Abdulaziz Almuzairee, Nicklas Hansen, Henrik I. Christensen
Reinforcement Learning Conference (RLC), 2024
project page / arXiv / code / bibtex
TD-MPC2: Scalable, Robust World Models for Continuous Control
Nicklas Hansen, Hao Su*, Xiaolong Wang*
International Conference on Learning Representations (ICLR), 2024 (Spotlight)
project page / arXiv / code / models / dataset / bibtex
Open X-Embodiment: Robotic Learning Datasets and RT-X Models
Open X-Embodiment, [...], Nicklas Hansen, [...] (200+ authors)
International Conference on Robotics and Automation (ICRA), 2024
project page / arXiv / code / dataset / bibtex
MoDem-V2: Visuo-Motor World Models for Real-World Robot Manipulation
Patrick Lancaster, Nicklas Hansen, Aravind Rajeswaran, Vikash Kumar
International Conference on Robotics and Automation (ICRA), 2024
project page / arXiv / bibtex
GNFactor: Multi-Task Real Robot Learning with Generalizable Neural Feature Fields
Yanjie Ze*, Ge Yan*, Yueh-Hua Wu*, Annabella Macaluso, Yuying Ge, Jianglong Ye, Nicklas Hansen, Li Erran Li, Xiaolong Wang
Conference on Robot Learning (CoRL), 2023 (Oral)
project page / arXiv / code / bibtex
Finetuning Offline World Models in the Real World
Yunhai Feng*, Nicklas Hansen*, Ziyan Xiong*, Chandramouli Rajagopalan, Xiaolong Wang
Conference on Robot Learning (CoRL), 2023 (Oral)
project page / arXiv / code / bibtex
On Pre-Training for Visuo-Motor Control: Revisiting a Learning-from-Scratch Baseline
Nicklas Hansen*, Zhecheng Yuan*, Yanjie Ze*, Tongzhou Mu*, Aravind Rajeswaran+, Hao Su+, Huazhe Xu+, Xiaolong Wang+
International Conference on Machine Learning (ICML), 2023
arXiv / code / bibtex
MoDem: Accelerating Visual Model-Based Reinforcement Learning with Demonstrations
Nicklas Hansen, Yixin Lin, Hao Su, Xiaolong Wang, Vikash Kumar, Aravind Rajeswaran
International Conference on Learning Representations (ICLR), 2023
project page / arXiv / code / bibtex
On the Feasibility of Cross-Task Transfer with Model-Based Reinforcement Learning
Yifan Xu*, Nicklas Hansen*, Zirui Wang, Yung-Chieh Chan, Hao Su, Zhuowen Tu
International Conference on Learning Representations (ICLR), 2023
project page / arXiv / code / bibtex
Visual Reinforcement Learning with Self-Supervised 3D Representations
Yanjie Ze*, Nicklas Hansen*, Yinbo Chen, Mohit Jain, Xiaolong Wang
Robotics and Automation Letters (RA-L), 2023
project page / arXiv / code / bibtex
Graph Inverse Reinforcement Learning from Diverse Videos
Sateesh Kumar, Jonathan Zamora*, Nicklas Hansen*, Rishabh Jangir, Xiaolong Wang
Conference on Robot Learning (CoRL), 2022 (Oral)
project page / arXiv / bibtex
Temporal Difference Learning for Model Predictive Control
Nicklas Hansen, Xiaolong Wang*, Hao Su*
International Conference on Machine Learning (ICML), 2022
project page / arXiv / slides / code / bibtex
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation
Rishabh Jangir*, Nicklas Hansen*, Sambaran Ghosal, Mohit Jain, Xiaolong Wang
Robotics and Automation Letters (RA-L), 2022
International Conference on Robotics and Automation (ICRA), 2022
project page / arXiv / code / bibtex
Learning Vision-Guided Quadrupedal Locomotion End-to-End with Cross-Modal Transformers
Ruihan Yang*, Minghao Zhang*, Nicklas Hansen, Huazhe Xu, Xiaolong Wang
International Conference on Learning Representations (ICLR), 2022 (Spotlight)
project page / arXiv / bibtex
Stabilizing Deep Q-Learning with ConvNets and Vision Transformers under Data Augmentation
Nicklas Hansen, Hao Su, Xiaolong Wang
Conference on Neural Information Processing Systems (NeurIPS), 2021
project page / arXiv / code / bibtex
Generalization in Reinforcement Learning by Soft Data Augmentation
Nicklas Hansen, Xiaolong Wang
International Conference on Robotics and Automation (ICRA), 2021
project page / arXiv / code / bibtex
Self-Supervised Policy Adaptation during Deployment
Nicklas Hansen, Rishabh Jangir, Yu Sun, Guillem Alenyà, Pieter Abbeel, Alexei A. Efros, Lerrel Pinto, Xiaolong Wang
International Conference on Learning Representations (ICLR), 2021 (Spotlight)
project page / arXiv / blog / code / bibtex
Short Term Blood Glucose Prediction based on Continuous Glucose Monitoring Data
Ali Mohebbi, Alexander R. Johansen, Nicklas Hansen, Peter E. Christensen, Jens M. Tarp, Morten L. Jensen, Henrik Bengtsson, Morten Mørup
Engineering in Medicine and Biology Conference (EMBC), 2020
arXiv / bibtex

Misc. open-source projects

TD-MPC2 Official Implementation⭐ 257
Nicklas Hansen, Hao Su*, Xiaolong Wang*
Oct 2023
project page / arXiv / code / bibtex
TD-MPC Official Implementation⭐ 297
Nicklas Hansen, Xiaolong Wang*, Hao Su*
Mar 2022
project page / arXiv / slides / code / bibtex
DMControl Generalization Benchmark⭐ 158
Nicklas Hansen, Xiaolong Wang
Nov 2020
project page / arXiv / code / bibtex
How to build RNNs and LSTMs from scratch with NumPy⭐ 240
Nicklas Hansen, Peter E. Christensen, Alexander R. Johansen
Oct 2019
colab / code

Press coverage

I have been mentioned in various media in connection with my research. Here's a few selected articles:

Contact

You are very welcome to contact me regarding my research. I typically respond within a few days.
I can be contacted directly at hello [at] nicklashansen 。com